Rough Set Flow Graphs and Ant Based Clustering in Classification of Disturbed Periodic Biosignals
نویسندگان
چکیده
In the paper, we are interested in classification of disturbed periodic biosignals. An ant based clustering algorithm is used to group episodes into which examined biosignals are divided. Disturbances in periodicity of such signals cause some difficulties in formation of coherent clusters of similar episodes. A quality of a clustering process result can be used as an indicator of disturbances. A local function in the applied clustering algorithm is calculated on the basis of temporal rough set flow graphs representing an information flow distribution for episodes.
منابع مشابه
Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets
With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملارائه روشی ترکیبی برای افزایش دقت پیشبینی در کاهش داده با استفاده از مدل مجموعه راف و هوش تجمعی
Designing a system with an emphasis on minimal human intervention helps users to explore information quickly. Adverting to methods of analyzing large data is compulsory as well. Hence, utilizing power of the data mining process to identify patterns and models become more essential from aspect of relationship between the various elements in the database and discover hidden knowledge. Therefore, ...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کامل